If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12z^2-7z=0
a = 12; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·12·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*12}=\frac{0}{24} =0 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*12}=\frac{14}{24} =7/12 $
| 10n=1 | | n/5=42/7 | | 6/3=10/t | | x/6=5.8 | | X^2+20x/3=0 | | 4n−16=32 | | 4r-3=-6 | | 1-7n=7 | | p^2+31p-14=0 | | -m^2+42m-30=0 | | -24+-2g=-92 | | n-45=95 | | -85=17z | | -6x-2=-2(3x+5) | | n+47/9=9 | | 10^r=100,000 | | -38=d/2+-31 | | 5+9x=68 | | 10+2x=40 | | 36+4p=-5(-4p-4 | | 6n−4n=16 | | 2x+2•14=2x+5•12 | | Z+3(z+7)=-3 | | 2x+28=2x+60 | | x^2+10=105 | | 10x+20=5x+30 | | -9(j+19)=-90 | | 1/3n-10=0 | | 4n-4n-1=24 | | −14⋅|x|+1,75=−3 | | -1+-3c=-13 | | 3x(3x-2)+7=6 |